Interpreting the C-metric
نویسندگان
چکیده
The basic properties of the C-metric are well known. It describes a pair of causally separated black holes which accelerate in opposite directions under the action of forces represented by conical singularities. However, these properties can be demonstrated much more transparently by making use of recently developed coordinate systems for which the metric functions have a simple factor structure. These enable us to obtain explicit Kruskal–Szekeres-type extensions through the horizons and construct two-dimensional conformal Penrose diagrams. We then combine these into a three-dimensional picture which illustrates the global causal structure of the space-time outside the black hole horizons. Using both the weak field limit and some invariant quantities, we give a direct physical interpretation of the parameters which appear in the new form of the metric. For completeness, relations to other familiar coordinate systems are also discussed.
منابع مشابه
$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کاملFixed point theorems under c-distance in ordered cone metric space
Recently, Cho et al. [Y. J. Cho, R. Saadati, S. H. Wang, Common xed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011) 1254-1260] dened the concept of the c-distance in a cone metric space and proved some xed point theorems on c-distance. In this paper, we prove some new xed point and common xed point theorems by using the distance in ordered con...
متن کاملFixed point results in cone metric spaces endowed with a graph
In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کاملFixed point theorems on generalized $c$-distance in ordered cone $b$-metric spaces
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
متن کاملGeneralized $F$-contractions in Partially Ordered Metric Spaces
We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...
متن کامل